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LETTER TO THE EDITOR 

On the ability of the optimal perceptron to generalise 

M Opper, W Kinzel, J Kleinz and R Nehl 
Institut fur Theoretische Physik, Justus-Liebig-Univeritat Giessen, D-6300 Giessen, 
Federal Republic of Germany 

Received 12 March 1990 

Abstract. A linearly separable Boolean function is derived from a set of examples by a 
perceptron with optimal stability. The probability to reconstruct a pattern which is not 
learnt is calculated analytically using the replica method. 

Even simple models of neural networks are able to learn specific tasks from a set of 
examples. The synaptic couplings between neurons adjust to the examples, either by 
construction or by a dynamic process. The properties of such networks and learning 
procedures have recently been analysed using methods of statistical mechanics of 
disordered systems (for reviews see Amit 1989, Kinzel and Opper 1990). 

In this letter we study the problem of learning a linearly separable Boolean function 
by a perceptron. Since this is a relatively simple task, it can be analysed analytically 
for some special cases (Vallet 1989, Gyorgyi and Tishby 1989). The target function 
S , = T ( S )  with S=(Sl,S2,...,SN)~{+1,-1}N i sdef inedbyavec torBERN:  

N 
so= T ( S )  = sign B ~ S ~ .  

j = 1  

This linearly separable Boolean function T is to be learnt by a perceptron which 
adjusts its weights J E R N  to a set of input-output examples given by (1). Hence we 
chose randomly aN many inputs 6” E {+l, -l}N with Y = 1,.  . . , a N  and compute 
to’= T(6”). This set {g”, 5;) is the only information the perceptron uses for learning 
(= adaption of its weights J). Note that we use only a N  random examples out of 
the 2 N  possible input-output states of (1). In the following we consider the limit 
N + 00 together with a constant value of a. 

After learning we obtain a perceptron U(S) with 

SA = u ( S )  = sign 4Sj .  
j 

We are interested in two properties: the learning ability L ( a )  and the generalisation 
ability G ( a ) .  L ( a )  is the probability that the learnt patterns are mapped correctly, 
i.e. that T(6”) = U(f”‘  while G ( a )  is the probability that a random chosen state S is 
reproduced correctly, i.e. that T ( S )  = U ( S ) .  

There are different ways to construct the perceptron J. The simplest one is the 
Hebb rule: 
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for which L ( a )  and G ( a )  have recently been calculated analytically (Vallet 1989). 
Another possibility is to construct the projector onto the linear space spanned by the 
set of a N  patterns {&”} (often called pseudo-inverse). In this case one has (0” = J .5”  
and J is given by (Kohonen 1988): 

where C is the correlation matrix 

1 
Ni 

C,, = - gg. 

Equation (4) uses the inverse of C which is defined for a < l ,  only. For a >  1 a 
corresponding matrix is constructed by minimising the quadratic deviation 

E = E  [eo”- J.&”]’.  ( 6 )  
Y 

There exists a local adaption algorithm (Adaline) by which the network automati- 
cally finds the projector J (Diederich and Opper 1989). For a < 1 the projector J 
reproduces the examples perfectly, L( a )  = 1 while the Hebb rule learns the patterns 
with errors only ( L ( a ) <  1 for a>O). However, the generalisation ability of the 
projector G(Q) which has been calculated numerically by Vallet et a1 (1989) is smaller 
than G ( a )  for the Hebb rule. In this letter we calculate G ( a )  analytically. 

A different approach to analyse the properties of learnt perceptrons is the phase 
space calculation introduced by Gardner (1988). In this case one averages over all 
possible perceptrons J which map the set of examples correctly. For the problem of 
linearly separable functions such a calculation has been performed by Gyorgyi and 
Tishby (1989). But since L( a )  and G( a )  are averaged over the whole phase pace of 
J (including the target vector B) it is not clear what are the properties of a particular 
perceptron J obtained by a special learning algorithm. 

The situation is different for the perceptron algorithm with optimal stability 
(Gardner 1988). In this case the corresponding phase space calculation yields the 
properties of a perceptron J which minimises the stability: 

k = mLn [ (60” J .$[,!’)( J J:)-”’] (7) 

where the minimum is taken from all of the patterns &’( Y = 1 , .  . . , aN). For such a 
perceptron there exist local learning rules (Krauth and Mezard 1987, Anlauf and Biehl 
1989) which have been analysed by the phase space approach (Opper 1988). Hence 
it is always possible to find the network with optimal stability. 

In this letter we calculate the generalisation ability G ( a )  for the projector couplings 
as well as for the optimal perceptron. First we show that in any case G ( a )  is given 
by a single parameter p of the vector J only; namely 

p = R / J  

with 

R = ~ J , B ,  and J * = C  J; 
j j 

where we take Xj Bf = 1. 
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To see this take a random input S and consider the variables 
x = c J j s j  and y = BjSj. (9) 

(4 = ( Y )  = 0 (x’) = J z  (Y’) = 1 ( X Y )  = R (10) 

j j 

For different inputs S, x and y are correlated Gaussian variables with 

where (. . .) means an average over the random inputs S. Hence the distribution P ( x ,  y )  
of x and y is given by 

By definition G ( a )  is the probability that xy > 0, hence one has 

G ( a )  = 2 lom dx lom dy P ( x ,  y ) .  (12) 

A straightforward calculation gives 
1 

G ( ~ ) = ~ - - c o s - ’  p. (13) 
77 

In the following we calculate p for the different weight vectors J considered above. - 

For the Hebb rule, equation (3), an easy calculation gives 
R = a -  J ~ = ~ + R ~  

which yields (Vallet 1989) 

2 7 7  

For the projector weights J, which minimise the quadratic form E, 
use the replica method of Gardner and Derrida (1988) to calculate 
we study the partition function 

equation (7), we 
R and J. Hence 

in the limit p + 03. For a < 1 the projector J is defined as the set of couplings which 
.ealises E = 0 and has minimal norm Q = J’. For a > 1 we have to adjust Q so that 
E becomes a minimum. Assuming that the free energy F ( P )  = p-’ In Z is self-averaging 
with respect to the random inputs the order parameter R can be found from the 
averaged free energy [ F ( P ) I a y .  The calculation is similar to the one in the appendix 
for the optimal perceptron and will be given elsewhere. Our result is 

which using (13) yields 
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For a = 0 and a = 1 one finds G( a) = 0.5, i.e. the network cannot generalise (G = 0.5 
is equivalent to a random guess). G ( a )  has a maximum at am 

a m  = E  2 ( 1  - J 1 - 5 )  -0.62. 

A similar calculation gives the generalisatiaon probability G( a) for the optimal 
perceptron. 

Following Gardner (1988) we consider the phase space volume 

of all normalised couplings which yield the correct output. 
Z shrinks to zero when the stability K reaches its optimal value. The order parameter 

R and the optimal stability K can be found from [In 21,” (see appendix). 
Note that the difference to previous calculations is the weak correlation of the 

output 50” to the input pattern (6;).  Using the replica method we obtain for the 
replica-symmetric saddle points 

Du Dz [ K  - z (1 -  R2)1’2- Rlul12= 1 - R2 4, 
The integrals are taken over the two-dimensional domain 9 given by K - z( 1 - R2)”2 - 
Rlul>O. 

Note that (21) differs from the well known result of Gardner (1988) for completely 
random Boolean functions by the appearance of the additional noise term U and the 
order parameter R. 

Equations (21) which are solved numerically give G ( a )  from (13). Figure 1 
compares the result with the generalisation ability G ( a )  of the other two perceptrons 

0.904 

a 
Figure 1. Generalisation probability against Q for three learning algorithms. 
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described above. Asymptotically we find 1 - G(a)  - a-’’2 for Hebb’s rule and projector 
matrix, whereas 1 - G ( a )  - a-’ for the optimal perceptron. 

The optimal perceptron generalises at best. Although it learns all of the patterns 
perfectly its generalisation ability is higher than the Hebb rule, contrary to the observa- 
tions of Vallet e? a1 (1989) considering the projector matrix and its extensions. 

This work is supported by the Stiftung Volkswagenwerk. 

Appendix 

We shall calculate (In Z],, from (20) using the replica trick, where [. . .Iav means an 
average over the random inputs ( 7 .  

The replicated partition function reads 

Here a denotes the replica index. 
We can now average over the inputs (7 and finally integrate over s,. We then obtain 

where 

xexp( - x x a x b ( ~ a . - R a R b ) - - ~ x : ( l - R : ) + i ~ x a ( ~ a l u ~ - A a ) }  1 (A2) 
a < b  2 a  

and Du = du/& 
normalisation N-’ Xj B: = 1. 

to J2 = N, R and q and obtain the saddle point equation 

is the Gaussian measure. In deriving (A2) we have used the 

Using a replica symmetric ansatz we introduce order parameters E, G, F conjugate 
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where 

H ( x )  = IXm Dt. ('43) 

It is interesting to note that after averaging over the random inputs our result becomes 
independent of the special target vector B. 

After eliminating the order parameters E, F and G we take the limit q + 1, which 
corresponds to optimal stability. This finally results in the order parameter (21). 
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